Success Story

March 6, 2018

On ‘smellovision’ and ‘olfactory virtual reality’ – a CBC Junior Investigator, Daniel Dombeck, NU, explains

It is well known that smell plays an important role in triggering and guiding animal behavior. However, how exactly different scents influence decision making processes has been difficult to study due to the hard-to-control, intrinsic properties of scents, which diffuse in space over time. In a recent paper published in Nature Communications and attributed in part to CBC funding, Daniel Dombeck, NU, describes a development of the first in the world ‘olfactory virtual reality’ system where scent is precisely controlled in time and space. Dombeck is a CBC Junior Investigator who was hired by NU in 2011 with a help of a CBC Recruitment Resources Award. As of 2017, he has also been a member of the CBC Catalyst Review Board. Congratulations, Dan!


Brain can navigate based solely on smells

Novel olfactory virtual reality system allows researchers to study how smells influence behaviors

Northwestern Now   |   by Amanda Morris   |   February 26, 2018


Credit: mzayat.com

EVANSTON – Northwestern University researchers have developed a new “smell virtual landscape” that enables the study of how smells engage the brain’s navigation system. The work demonstrates, for the first time, that the mammalian brain can form a map of its surroundings based solely on smells.

The olfactory-based virtual reality system could lead to a fuller understanding of odor-guided navigation and explain why mammals have an aversion to unpleasant odors, an attraction to pheromones and an innate preference to one odor over another. The system could also help tech developers incorporate smell into current virtual reality systems to give users a more multisensory experience.

“We have invented what we jokingly call a ‘smellovision,’” said Daniel A. Dombeck, associate professor of neurobiology in Northwestern’s Weinberg College of Arts and Sciences, who led the study. “It is the world’s first method to control odorant concentrations rapidly in space for mammals as they move around.”

The study was published online today, Feb. 26, by the journal Nature Communications.

Daniel A. Dombeck, NU

Daniel A. Dombeck, NU

Researchers have long known that odors can guide animals’ behaviors. But studying this phenomenon has been difficult because odors are nearly impossible to control as they naturally travel and diffuse in the air. By using a virtual reality system made of smells instead of audio and visuals, Dombeck and graduate student Brad Radvansky created a landscape in which smells can be controlled and maintained.

“Imagine a room in which each position is defined by a unique smell profile,” Radvansky said. “And imagine that this profile is maintained no matter how much time elapses or how fast you move through the room.”

That is exactly what Dombeck’s team developed, using mice in their study. Aided by a predictive algorithm that determined precise timing and distributions, the airflow system pumped scents — such as bubblegum, pine and a sour smell — past the mouse’s nose to create a virtual room. Mice first explored the virtual environment through both visual and olfactory cues. Researchers then shut off the visual virtual reality system, forcing the mice to navigate the room in total darkness based on olfactory cues alone. The mice did not show a decrease in performance. Instead, the study indicated that moving through a smell landscape engages the brain’s spatial mapping mechanisms.

Not only can the platform help researchers learn more about how the brain processes and uses smells, it could also lay the groundwork for human applications.

“Development of virtual reality technology has mainly focused on vision and sound,” Dombeck said. “It is likely that our technology will eventually be incorporated into commercial virtual reality systems to create a more immersive multisensory experience for humans.”


The research was supported by The McKnight Foundation, The Klingenstein Foundation, The Whitehall Foundation, the Chicago Biomedical Consortium with support from the Searle Funds of The Chicago Community Trust, the National Institutes of Health (award number 1R01MH101297) and the National Science Foundation (award number CRCNS 1516235).


Source:

Adapted (with modifications) from Northwestern Now, by Amanda Morris, posted on February 26, 2018.


*Publication attributed to CBC funding:

Radvansky BA, Dombeck DA. An olfactory virtual reality system for mice. Nat Commun. 2018 Feb 26;9(1):839. (PubMed)


Ties to CBC:

*CBC Recruitment Resources Award (2011):
Daniel Dombeck, NU – CBC Junior Investigator
▸ Four New Faculty Receive CBC Junior Investigator Awards

CBC Catalyst Review Board
Daniel DombeckMember (2017-present)